
High-Precision Computation:
Mathematical Physics and Dynamics

D. H. Bailey∗ R. Barrio† J. M. Borwein‡

December 23, 2010

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate
for most scientific applications. However, for a rapidly growing body of important
scientific computing applications, a higher level of numeric precision is required.
Such calculations are facilitated by high-precision software packages that include
high-level language translation modules to minimize the conversion effort. This pa-
per presents a survey of recent applications of these techniques and provides some
analysis of their numerical requirements. These applications include supernova sim-
ulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic
systems, studies of the fine structure constant, scattering amplitudes of quarks, glu-
ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation
of orthogonal polynomials, numerical integration of ODEs, computation of periodic
orbits, studies of the splitting of separatrices, detection of strange nonchaotic at-
tractors, Ising theory, quantum field theory, and discrete dynamical systems. We
conclude that high-precision arithmetic facilities are now an indispensable compo-
nent of a modern large-scale scientific computing environment.

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Supported in part
by the Director, Office of Computational and Technology Research, Division of Mathematical, Informa-
tion, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-
05CH11231.
†Depto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

rbarrio@unizar.es. Supported in part by the Spanish research project MTM2009-10767.
‡Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of

Newcastle, Callaghan, NSW 2308, Australia, jonathan.borwein@newcastle.edu.au. Supported in part
by the Australian Research Council.

1

1 Introduction

Virtually all present-day computer systems, from personal computers to the largest super-
computers, implement the IEEE 64-bit floating-point arithmetic standard, which provides
53 mantissa bits, or approximately 16 decimal digit accuracy. For most scientific appli-
cations, 64-bit arithmetic is more than sufficient, but for a rapidly expanding body of
applications, it is not. In this paper we will examine a variety of applications where
high-precision arithmetic is useful:

1. Numerically sensitive calculations. Some scientific computations include sensitive
portions that produce inaccurate results when performed using straightforward al-
gorithms and 64-bit arithmetic. These inaccurate results may in turn induce other
errors, such as taking the wrong path in a conditional branch. Often such errors
can be overcome by using higher-precision arithmetic in just one or two spots.

2. Long iterative simulations. Almost any kind of physical simulation, if performed over
many time intervals, will eventually depart from reality, due to cumulative round-off
error. High-precision arithmetic can eliminate much of this error, although errors
due to the discretization of time and space may remain.

3. Large-scale simulations. Computations that are well-behaved on modest-sized prob-
lems, such as those run on a single-CPU system, may exhibit significant numerical
errors when scaled up to the huge sizes typical of those now being run on large
systems with many Tbytes of memory and well over 100,000 processor cores.

4. Small-scale phenomena. When studying why some behavior appears in a system (or
if truly appears at all), it is often necessary to employ a very fine-scale resolution to
“zoom” in on the phenomena. These fine-scale computations often require higher-
precision arithmetic to fully resolve.

5. “Experimental” computations. Recent work in experimental mathematics has high-
lighted the effectiveness of employing extremely high precision (hundreds or even
thousands of digits) to uncover new identities and relations. One example is the
analytic evaluation of classes of integrals that arise in mathematical physics.

With regards to item 1, it should be kept in mind that the vast majority of persons
currently performing numerical computations are not experts in numerical analysis, and
this fact is not likely to change anytime soon. For example, in 2010 at the University of
California, Berkeley, a total of 219 students enrolled in the two sections of Math 128A, a
one-semester introductory numerical analysis course required of applied math majors, but
only 24 enrolled in Math 128B, a more advanced course. By contrast, in the same year
a total of 870 seniors graduated in the Division of Mathematical and Physical Sciences

2

(including Mathematics, Physics and Statistics), the College of Chemistry and the Col-
lege of Engineering (including Computer Science), most of whom will do some numerical
computation in their career work. If we add to this list graduates in other fields with
computational components, such as biology, geology, medicine and social sciences, we
conclude that only about 2% of the Berkeley graduates each year who likely will be using
computational tools in their career work have advanced training in numerical analysis.
There is no reason to believe that this ratio is significantly higher elsewhere.

Thus, for the foreseeable future, almost all technical computing will be performed by
persons who have had only basic training in numerical analysis, or none at all. Such per-
sons typically rely on relatively straightforward algorithms and pre-existing, off-the-shelf
software, focusing most of their efforts on details specific to their discipline (physics, engi-
neering, psychology, etc.). When numerical difficulties are encountered, they seek a simple
and easy-to-implement remedy, instead of attempting wholesale algorithm replacement.

High-precision arithmetic is an attractive option for such users, because even in situa-
tions where numerically better behaved algorithms are known in the literature that may
resolve a numerical problem, it is often both easier and more reliable to simply increase
the precision used for the existing algorithm, using tools such as those described in Section
2. At the very least, using high-precision arithmetic to rectify numerical problems buys
some time while a better long-term solution is sought.

1.1 Extra precision versus algorithm changes

The following example illustrates some of the issues involved. Suppose one wishes to re-
cover the integer polynomial that produces the result sequence (1, 32771, 262217, 885493,
2101313, 4111751, 7124761) for integer arguments (0, 1, . . . , 6). While there are several
ways to approach this problem, many scientists and engineers will employ a least-squares
scheme, since this is a very familiar tool in scientific data analysis, and efficient library
software is readily available. Indeed, this approach is suggested in a widely used reference
[74, pg. 44]. In this approach, one constructs the (n+ 1)× (n+ 1) linear system

n+ 1
∑n

k=1 xk · · ·
∑n

k=1 x
n
k∑n

k=1 xk
∑n

k=1 x
2
k · · ·

∑n
k=1 x

n+1
k

...
...

. . .
...∑n

k=1 x
n
k

∑
k=1 x

n+1
k · · ·

∑n
k=1 x

2n
k



a0

a1
...
an

 =


∑n

k=1 yk∑n
k=1 xkyk

...∑n
k=1 x

n
kyk

 , (1)

where (xk) are the integer arguments and (yk) are the sequence values. Then one solves
for (a1, a2, · · · , an) using, for example, LINPACK [45] or LAPACK [44] software.

In the specific problem mentioned above, a double-precision (64-bit) floating-point im-
plementation of the least-squares scheme succeeds in finding the correct polynomial coeffi-
cients, which, after rounding to the nearest integer, are (1, 0, 0, 32769, 0, 0, 1), or, in other

3

words, f(x) = 1+(215+1)x3+x6. Unfortunately, this scheme fails to find the correct poly-
nomial for a somewhat more difficult problem, namely to find the degree-8 polynomial that
generates the 9-long sequence (1, 1048579, 16777489, 84941299, 268501249, 655751251,
1360635409, 2523398179, 4311748609), for integer arguments (0, 1, · · · , 8). The program
finds approximate degree-8 polynomial coefficients, but they are not correct, even after
rounding to the nearest integer—too much floating-point round-off error has occurred.

Many numerical analysts will point out here that this approach is not the best scheme
for this type of problem, in part because the Vandermonde matrix system (1) is known
to be rather unstable (this is also pointed out in [74, pg. 44]). A more effective approach
in the cases such as this, where the number of inputs is one greater than the degree, is
to employ the Lagrange interpolating polynomial, which, given a set of n+ 1 data points
(x0, y0), (x1, y1), · · · , (xn, yn), is defined as L(x) =

∑n
j=0 yjpj(x), where

pj(x) =
∏

0≤i≤n, i 6=j

x− xi
xj − xi

. (2)

In the problem at hand, xj = j for 0 ≤ j ≤ n. In order to minimize numerical error,
one should separately compute the polynomial in the numerator and the factorials in the
denominator before performing the division. In this way, the chief source of numerical
error is the evaluation of the inner products inherent in the formula L(x) =

∑n
j=0 yjpj(x).

This scheme, implemented with 64-bit IEEE arithmetic, correctly deduces that the
9-long data sequence above is produced by the polynomial 1 + (220 + 1)x4 + x8. However,
this scheme fails when given the more challenging 13-long input data vector (1, 134217731,
8589938753, 97845255883, 549772595201, 2097396156251, 6264239146561, 15804422886323,
35253091827713, 71611233653971, 135217729000001, 240913322581691, 409688091758593),
which is generated by 1 + (227 + 1)x6 + x12.

The state-of-the-art algorithm in this area, as far as the present authors are aware,
is a technique due to James Demmel and Plamen Koev [42], which accurately solves
“totally positive” systems such as (1), where the determinant of any square submatrix
is positive. A Matlab implementation of this scheme is available at [65]. We found that
this program solves the degree-6 and degree-8 problems mentioned above, but, like the
Lagrange polynomial scheme, fails for the degree-12 problem.

However, there is another approach to these problems: simply modify the source code
of any reasonably effective solution scheme to invoke higher-precision arithmetic. For
example, when we modified our Fortran-90 least-squares scheme to employ double-double
precision (approximately 31-digit accuracy), using the QD software mentioned in Section
2, we were able to correctly solve all three problems (degrees 6, 8 and 12). Converting
the Lagrange polynomial scheme to use double-double arithmetic was even easier, and
the resulting program also solved all three problems without incident. These results are
summarized in Table 1. No entry is listed for the Demmel-Koev scheme with 31-digit

4

Precision Problem degree
Algorithm (digits) 6 8 12
Least-squares 16 succeeded failed failed

31 succeeded succeeded succeeded
Lagrange 16 succeeded succeeded failed

31 succeeded succeeded succeeded
Demmel-Koev 16 succeeded succeeded failed

Table 1: Success and failure of various polynomial data fit schemes

arithmetic, because we relied on a Matlab implementation for which a double-double
version is not available, although we have no reason to doubt that it would also succeed.

2 High-precision software

Efficient algorithms are known for performing, to any desired precision, the basic arith-
metic operations, square and n-th roots, and most transcendental functions [29, pp. 215–
245], [30, pp. 299–318], [31, 32, 33, 36]. Software packages implementing these algorithms
have been available since the early days of computing. However, many of these packages
have required one to rewrite a scientific application with individual subroutine calls for
each arithmetic operation. The difficulty of writing and debugging such code has deterred
all but a few computational scientists and mathematicians from using such tools.

In the past 10 years or so, high-precision software packages have been produced that in-
clude high-level language interfaces that make such conversions relatively painless. These
packages typically utilize custom datatypes and operator overloading features, which are
available in languages such as C++ and Fortran-90, to facilitate conversion. Even more
advanced high-precision facilities are available in the commercial products Mathematica
and Maple, which incorporate arbitrary-precision arithmetic in a naturally integrated way
for a wide range of functions, many more than are typically available from freely available
software. These two commercial products also provide facilities to convert existing scien-
tific programs written in other languages, although human intervention is often required.

Here are some high-precision arithmetic software packages that are freely available on
the Internet, listed in alphabetical order. The ARPREC, QD and MPFUN90 packages
are available from the first author’s website: http://crd.lbl.gov/~dhbailey/mpdist.

• ARPREC. This package includes routines to perform arithmetic with an arbitrarily
high level of precision, including many algebraic and transcendental functions. High-
level language interfaces are available for C++ and Fortran-90, supporting real,
integer and complex datatypes.

5

• GMP. This package includes an extensive library of routines to support high-precision
integer, rational and floating-point calculations. GMP has been produced by a vol-
unteer effort and is distributed under the GNU license by the Free Software Foun-
dation. It is available at http://gmplib.org.

• MPFR. The MPFR library is a C library for multiple-precision floating-point com-
putations with exact rounding, and is based on the GMP multiple-precision library.
Additional information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional information
is available at http://perso.ens-lyon.fr/nathalie.revol/software.html. A
similar package is GMPFRXX, available at http://math.berkeley.edu/~wilken/
code/gmpfrxx.

• MPFUN90. This is similar to ARPREC in user-level functionality, but is written
entirely in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31 digits)
and “quad-double” (approx. 62 digits) arithmetic. High-level language interfaces are
available for C++ and Fortran-90, supporting real, integer and complex datatypes.
This software is much faster than using arbitrary precision software when only 31
or 62 digits are required.

The QD package, which provides double-double and quad-double arithmetic, is based
on the following algorithms for the accurate addition and multiplication of two IEEE
64-bit operands using rounded arithmetic, due to Knuth [64] and Dekker [41]:

function [x, y] = TwoSum(a; b)
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

function [x, y] = Split(a)
c = fl(factor · a) (in double precision factor = 227 + 1)
x = fl(c− (c− a))
y = fl(a− x)

function [x, y] = TwoProd(a; b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2− (((x− a1 · b1)− a2 · b1)− a1 · b2))

In the above, fl stands for the floating-point evaluation using rounded arithmetic). These
algorithms satisfy the following error bounds [72]:

6

Theorem 1 For a, b ∈ F and x, y ∈ F, TwoSum and TwoProd verify

[x, y] = TwoSum(a, b), x = fl(a+ b), x+ y = a+ b, y ≤ u|x|, y ≤ u|a+ b|,
[x, y] = TwoProd(a, b), x = fl(a× b), x+ y = a× b, y ≤ u|x|, y ≤ u|a× b|.

One downside of using high-precision software is that such facilities greatly increase
computer run times, compared with using conventional 64-bit arithmetic. For example,
computations using double-double precision arithmetic typically run five to ten times
slower than with 64-bit arithmetic. This figure rises to at least 25 times for the quad-
double arithmetic, to more than 100 times for 100-digit arithmetic, and to well over 1000
times for 1000-digit arithmetic. However, in many cases, high-precision arithmetic is
only needed in one or two places in the code, so that the total run time is not much
greater than the standard code. Even when major slowdowns are inevitable, modern
highly parallel computer technology often permits such calculations to be completed in
reasonable wall-clock run times.

3 Applications of high-precision arithmetic

3.1 Planetary orbit calculations

One central question of planetary theory is whether the solar system is stable over cosmo-
logical time frames (many millions or billions of years). Planetary orbits are well known
to exhibit chaotic behavior. Indeed, as Isaac Newton once noted, “The orbit of any one
planet depends on the combined motions of all the planets, not to mention the actions
of all these on each other. To consider simultaneously all these causes of motion and to
define these motions by exact laws allowing of convenient calculation exceeds, unless I am
mistaken, the forces of the entire human intellect.” [48, p. 121].

Scientists have studied this question by performing very long-term simulations of plan-
etary motions. These simulations typically do fairly well for long periods, but then fail
at certain key junctures, such as when two planets pass fairly close to each other. Re-
searchers have found that double-double or quad-double arithmetic is required to avoid
severe numerical inaccuracies, even if other techniques are employed to reduce numerical
error [66]. A team led by A. Hayes studied solar system orbits using various numerical
ordinary differential equation (ODE) integrators, checked to higher precision using a Tay-
lor series integrator, performed using 19-digit Intel extended precision [59] (see Figure 1).
Applegate and others employed a special-purpose computer to investigate the stability of
the outer solar system [3].

7

Figure 1: Divergence between nearby trajectories, integrated with four different numerical
integrators. Left figure: a chaotic trajectory with a Lyapunov time of about 12 million
years. Right figure: a trajectory showing no evidence of chaos over 200My. Both trajec-
tories are within observational uncertainty of the outer planetary positions. (Reproduced
with permission from [59])

3.2 High-precision solution of ODEs: Taylor method

In several applications of dynamical systems we need to integrate the relevant differential
equation, normally for a short time, with very high precision. Moreover, in the study of
the bifurcations and stability of periodic orbits (by instance) we also have to integrate
the first order variational equations using as initial conditions the identity matrix. To
reach this goal we may, obviously, use any numerical ODE method such as Runge-Kutta.
During the last few years, the Taylor method has emerged as a preferred method in the
computational dynamics community [76].

The Taylor method is one of the oldest numerical methods for solving ordinary differ-
ential equations, but it is scarcely used in the numerical analysis community. The formu-
lation is quite simple [17, 22, 39]. Let us consider the initial value problem ẏ = f(t, y).
Now, the value of the solution at ti (that is, y(ti)) is approximated by yi from the n-th
degree Taylor series of y(t) at t = ti (the function f has to be a smooth function). So,
denoting hi = ti − ti−1,

y(t0) =: y0,

y(ti) ' yi−1 + f(ti−1,yi−1)hi + . . .+
1

n!

dn−1f(ti−1,yi−1)

dtn−1
hni =: yi.

Therefore, the problem is reduced to the determination of the Taylor coefficients
{1/(j + 1)! djf/dtj}. This may be done quite efficiently by means of the automatic
differentiation (AD) techniques. Note that the Taylor method has several good features
(for details see [17, 18, 22]).

8

10
−30

10
−20

10
−10

10
−1

10
0

10
1

C
PU

 ti
m

e

dop853
odex
TIDES

100 200 300 400 500
0

2

4

6

8

10

12

14

16

−Log
10

(Relative error)

C
PU

 ti
m

e

TIDES (variable precision)

Relative error

quadruple precision multiple precision

Figure 2: Left: Precision vs. CPU time diagram in quadruple precision for the numerical
integration of the unstable periodic orbit LR for the Lorenz model using a Runge-Kutta code
(dop853), an extrapolation code (odex) and a Taylor series method (TIDES). Right: Precision
vs. CPU time diagram for the multiple-precision numerical integration of an unstable periodic
orbit for the Lorenz model using the TIDES code.

In the Fig. 2 we present some comparisons on the Lorenz model [69] for the classical
Saltzman’s parameter values using the Taylor method (TIDES code) and the well estab-
lished codes dop853 (a Runge-Kutta code) and odex (an extrapolation code) developed
by Hairer and Wanner [55]. We observe that in quadruple precision quite soon the Taylor
method becomes the fastest and, as expected, the odex code is more efficient than the
Runge-Kutta code (note that odex is a variable order code, as TIDES, and so it is more
adaptable than the fixed order method). In double precision the most efficient code is the
Runge-Kutta code, but for high precision the Taylor series method it is the only reliable
method. Note that the computer time for a high-precision numerical integration of one
period (T = 1.55865) of the LR unstable periodic orbit (in symbolic dynamics notation
one loop around the left equilibrium point, and one around the right one [80]) maintaining
500 digits is just around 16 seconds using a normal desktop computer, a quite reasonable
time.

So, one question is, do we really need such a large accurate numerical integrations in
these kind of systems? To illustrate the need we show in Fig. 3 the numerical simulations
of 16 time periods using the the TIDES code with 300 digits and 1 time period using
double precision for the numerical simulation of the L25R25 unstable periodic orbit for the
Lorenz model. Now we lose more than 16 digits on each period (the period of the orbit
is T = 33.890206423038 and the largest Lyapunov exponent λ = 0.958, so exp(λT) ≈

9

−10 0 10 −20
0

200

5

10

15

20

25

30

35

40

45

y
x

z

 1 period - TIDES (16 digits)
 16 periods -TIDES (300 digits)

First point TIDES (16 digits)
First-Last point TIDES (300 digits)

Last point TIDES (16 digits)

Figure 3: Numerical integration of the L25R25 unstable periodic orbit for the Lorenz model
during 16 time periods using the TIDES code with 300 digits and 1 time periods using double
precision.

1.5324 ·1016), and therefore it is not possible to simulate any period of this orbit in double
precision. The double precision orbit is not periodic (see the zoom) and it also loses the
symmetry of the correct orbit. Note that this simulation is among the longest precise
numerical calculations presented in the literature for the Lorenz model, up to a final time
tf ≈ 1150 (see [62] for a different approach to the computability of the Lorenz model).
Obviously with the code TIDES one can go as far as his/her computer is able to compute.

It is important to remark that nowadays there are excellent free-software implementa-
tions of the Taylor series method, with arbitrary high-precision, for the numerical solution
of ODEs and for the automatic determination of the solution of high-order variational
equations. The software TIDES [1] (Taylor series Integrator for Differential EquationS) is
a powerful implementation of this technology (see http://gme.unizar.es/software/tides

or send an email to tides@unizar.es or rbarrio@unizar.es).

3.3 Evaluating orthogonal polynomials

The numerical evaluation of recurrences have the potential of being unstable [24, 50] and
in a large number of numerical algorithms we have to use them. In some circumstances,
the evaluation is stable, as in the evaluation of a Chebyshev series approximation of
a function (except in “ill conditioning cases”), but in other cases we have an unstable

10

algorithm and we may have no other known option. In such cases a numerical analyst
may work on finding a stable algorithm but and “applied user” needs a fast solution.
So, one answer is the use of high-precision, as a fast option when no stable algorithm
is known. In this section we comment two cases concerning with orthogonal polynomial
series and the recurrences used in their evaluation. In the first example, the combined use
of double-precision and high-precision controlled via theoretical bounds (running error
bounds) permits to compute and evaluate series of Sobolev orthogonal polynomials. And
later, a modification, using ideas of high-precision computation, of the standard algorithm
to evaluate Chebyshev series gives a relative accurate algorithm.

The use of the classical families of orthogonal polynomials has been extended to almost
all mathematical and physical disciplines, including approximation theory, spectral meth-
ods, representation of potentials and others. In the last few years, researchers have studied
orthogonal polynomials in Sobolev spaces [43]. One particular case of interest is when
measures related to derivatives are purely atomic, with a finite number of mass points.
That is, given a set of K evaluation points {c1, . . . , cK} (the support of the discrete mea-
sure), a set of indexes that indicate the maximum order of derivatives in each evaluation
point {r1, . . . , rK}, and a set of non-negative coefficients {λji | j = 1, . . . , K; i = 0, . . . , rj},
we define the Sobolev inner product

〈p, q〉W =

∫
R
p(x) q(x) dµ0(x) +

K∑
j=1

rj∑
i=0

λji p
(i)(cj) q

(i)(cj), λji ≥ 0. (3)

This particular case is an important instance of the class of discrete Sobolev inner prod-
ucts. Note that the standard orthogonal polynomials are orthogonal with respect to a
“standard” inner product

〈p, q〉 =

∫
R
p(x) q(x) dµ0(x), (4)

where µ0 is a positive Borel measure on the real line with infinitely many points at the
support.

Sobolev orthogonal polynomials {qn(x)} satisfy a (2g + 1)-term recurrence relation

h(x) qn−g(x) =
n∑

k=max{0,n−2g}

bn,k qk(x), (n ≥ g), (5)

being h(x) a polynomial of degree g. The reference [19] presents the complete set of
formulas to obtain the coefficients {bij} of (5). In order to show the complexity of the
process, the proposition below presents just one of the algorithms of [19] needed to obtain
the coefficients in the general case (n ≥ g).

11

Proposition 1 Let {q0(x), q1(x), . . . , qg−1(x)} be a monic orthogonal polynomial basis of
Pg−1 (where g := degree(h(x))) with respect to (3) and {p0(x), p1(x), . . . , pg−1(x)} with
respect to (4). Then

q0(x) = 1,

x ql−1(x) = ql(x) +
l−1∑
s=0

bl,s qs(x), 1 ≤ l < g,

where bl,s = δl,s +
1

‖qs‖2W

{
l∑

m=s+1

δl,m

K∑
j=1

rj∑
i=0

λji p
(i)
m (cj) q

(i)
s (cj)

}
being


δl,l = 1,
δl,l−1 = al−1,l−2 + βl−1,
δl,l−2 = al−1,l−3 + al−1,l−2 βl−2 + γl−1,
δl,m = al−1,m−1 + al−1,m βm + al−1,m+1 γm+1, m = s, . . . , l − 3,

with as,t given by as,t = − 1

‖pt(x)‖2
K∑
j=1

rj∑
i=0

λji q
(i)
s (cj) p

(i)
t (cj), t ≥ 0,

as,t = 0, t < 0.

(6)

The above formulas to obtain the coefficients {bij} are, in general, quite unstable
numerically. The main reasons are the appearance of ‖pi‖ in the formulas and the necessity
of computing derivatives of polynomials at the support of the discrete measures. It is well
known that the evaluation of derivatives is a highly unstable problem and can lead to
severe rounding errors. On the other hand, the L2-norms ‖pi‖ decrease very fast in the
case of Jacobi polynomials and grow in the case of Hermite and Laguerre polynomials.
As a result, terms of very different sizes can appear, which result in numerical errors due
to cancelation.

In Figure 4 we present the evaluation of the square of the L2-norm, with respect to
their own inner products, of the classical and the Sobolev polynomials of two families:
Chebyshev and Hermite. The computations have been done by using 128 and 256 bits of
precision in the mantissa (note that 53 bits is the standard double precision). Rounding
errors render the computation completely inaccurate in some cases using 128 bits. One of
the reasons is the decay of ‖pi‖2, from 1 to 10−30, which requires the use of a high precision.
In the figures we have plotted both precisions (128 and 256 bits) in the cases with three
mass points in the discrete measure. We observe that for low degrees both computations
are similar, but for degrees higher than 15 the results are completely different (cases b-c,
e-f), generating, in the case of 128 bits, inaccurate coefficients {bij}.

12

0 10 20 30 40 50

10
-20

10
0

10
20

0 10 20 30 40 50
10

0

10
20

10
40

10
60

degree n degree n

n
o

rm

n
o

rm

b

a

c
classic

classic, d

e

f

2 2

Figure 4: Evaluation (degree 0 to 50) of the square of the L2-norm of four families
of Sobolev orthogonal polynomials compared with the associated classical orthogonal
polynomials. On the left, Chebyshev-Sobolev polynomials with: (a) one mass point c =
1.5 up to 1st derivative, λ = 1/10, using 128 bits, (b) three mass points cj = −1, 0, 0.5
up to 3rd derivative, λij = 1/10, using 128 bits, and (c) the same as (b) but using 256
bits. On the right, Hermite-Sobolev polynomials with: (d) one mass point c = 1.5 up
to 1st derivative, λ = 1/10, using 128 bits, (e) three mass points cj = −1, 0, 0.5 up to
5th derivative, λij = 1/10, using 128 bits, and (f) the same as (e) but using 256 bits.
(Reproduced with permission from [20]).

¿From Figure 4 it is clear that in the computation of the recurrence coefficients {bij} it
is necessary to use multiple-precision software. Note that this is not a severe problem, we
just need to evaluate once the coefficients and to store them for any other evaluation pro-
cess. Besides, when we want to evaluate a finite series of Sobolev orthogonal polynomials
it is necessary to control the rounding errors.

In Figure 5 we show the behavior of some theoretical error bounds [20]: T4 a backward
error bound and T5 for the running error bound, and the relative error in a multiple-
precision evaluation of a Sobolev series. Note that we present relative error bounds and
relative rounding errors, that is, for q(x) 6≈ 0 we divide by |q(x)|. We have up to degree
50 of the function f(x) = (x+ 1)2 sin(4x) in Chebyshev-Sobolev orthogonal polynomials,
considering one mass point c = 1 up to first derivative in the discrete part of the inner
product. In the figures on the left we use double precision (53 bits on the mantissa) and
on the right we use multiple precision (96 bits on the mantissa for x < −0.5 (on the
left of the vertical line) and 64 for x > −0.5). The turning point x = −0.5 is the point
where the relative running error in double precision is greater than 10−10. Therefore, from
the figures we can observe how the combined use of rounding error bounds (in this case
the running error bound) and multiple-precision libraries permits us to evaluate Sobolev
series accurately.

Another situation where high precision is useful is in evaluating “ill-conditioned” poly-

13

-2 -1 0 1 2

10
-20

10
-10

10
0

10
10

-2 -1 0 1 2

10
-20

10
-10

10
0

10
10

point x point x

10
-30

10
-30

T4

T5

Error

T4

T5

Error

double precision multiple precision

-0.5

Figure 5: Behavior of the theoretical error bounds (T4 a backward error bound and
T5 for the running error bound) and the relative error in the double- and multiple-
precision evaluation of the Chebyshev-Sobolev approximation of degree 50 of the function
f(x) = (x + 1)2 sin(4x), where the discrete Sobolev measure have one mass point c = 1
up to 1st derivative in the discrete part of the inner product. In the figure on the left we
use double precision and on the right multiple-precision (on the left of the vertical line
we use 96 bits on the mantissa and 64 on the right part). (Reproduced with permission
from [20]).

nomials. For instance, if one wishes to evaluate the polynomial p(x) = (x−0.75)7(x−1)10

close to one of its multiple roots, one will experience numerical difficulties. One solution is
to find an optimal polynomial basis, although this may not be practical in many real-world
situations. Another option is to use a good algorithm (e.g., Horner’s algorithm for power
series, the de-Calteljau’s algorithm for the Bernstein basis and Clenshaw’s algorithm for
classical orthogonal polynomial basis), implemented with high-precision arithmetic. A
third option, which is quite attractive when one does not want to deal with high-precision
software, is to employ some ideas that recently emerged in stability analysis [72, 75]. This
approach permits one to use double precision arithmetic, yet still maintain the quality of
the numerical evaluations with a relative error on the order of the rounding unit u, plus
the conditioning of the problem times the square of the rounding unit. The basis of these
algorithms are the are the TwoSum and TwoProd schemes mentioned in Section 2.

For instance, recently Graillat et al. [52] developed a “compensated” version of the
Horner’s algorithm. Also, H. Jiang et al. [63] developed a “compensated” version of
Clenshaw’s algorithm to evaluate a finite series of Chebyshev orthogonal polynomials
p(x) =

∑n
j=0 ajTj(x), which we present here:

14

Clenshaw’s algorithm Compensated Clenshaw’s algorithm
function Clenshaw(p, x) function CompClenshaw(p, x)

bn+2 = bn+1 = 0 b̂n+2 = b̂n+1 = 0,
εbn+2 = εbn+1 = 0,

for j = n : −1 : 1 for j = n : −1 : 1

bj = 2xbj+1 − bj+2 + aj [s, πj]=TwoProd(b̂j+1, 2x)

end [v, σj]=TwoSum(s,−b̂j+2)

Clenshaw(p, x) ≡ xb1 − b2 + a0 [b̂j, βj]=TwoSum(v, aj)
ŵj=πj + σj + βj
εbj = 2x · εbj+1 − εbj+2 + ŵj

end

[s, π0]=TwoProd(b̂1, x)

[v, σ0]=TwoSum(s,−b̂2)
[b̂0, β0]=TwoSum(v, a0)
ŵ0=π0 + σ0 + β0

εb0 = x · εb1 − εb2 + ŵ0

CompClenshaw(p, x) ≡ b̂0 + εb0

For this compensated algorithm it is possible to prove the following relative error bounds:

Theorem 2 [63] Let p(x) =
∑n

i=0 aiTi(x) be a polynomial in Chebyshev form. If the
condition number for polynomial evaluation of p(x) at entry x is defined by

cond(p, x) =
p̃(|x|)
|p(x)|

=

∑n
j=0 |aj|T̃j(|x|)
|
∑n

j=0 ajTj(x)|
, (7)

then the relative forward error bounds of the Clenshaw algorithm and compensated Clen-
shaw algorithm are such that

|Clenshaw(p, x)− p(x)|
|p(x)|

≤ O(u) · cond(p, x). (8)

|CompClenshaw(p, x)− p(x)|
|p(x)|

≤ u+O(u2) · cond(p, x). (9)

This theorem shows ones particularly nice feature of compensated algorithms, namely
that the effect of the conditioning of the problem is delayed up to second order in the
rounding unit u, yielding highly accurate (in relative error) computations.

Figure 6 presents the evaluation of the polynomial p(x) = (x− 0.75)7(x− 1)10 for 400
equally spaced points in the interval [0.74855, 0.75145]. It is clear that the compensated
algorithm of Clenshaw gives a much smoother solution than the original Clenshaw’s al-
gorithm. Moreover, the relative error is always (except when p(x) is very close to zero)

15

0.749 0.75 0.751
−2

−1

0

1

2
x 10−12

0.749 0.75 0.751
−2

0

2
x 10−26

Clenshaw CompClenshaw

point x point x

Figure 6: Evaluation of p(x) = (x − 0.75)7(x − 1)10 in the neighborhood of the multiple
root x = 0.75, using the algorithms of Clenshaw (left) and Compensated Clenshaw (right).
(Reproduced with permission from [63]).

on the order of the rounding unit u. This is often a crucial consideration in algorithms
for locating zeros of polynomials in floating point arithmetic, because oscillations like the
ones presented on the left figure can make it impossible to obtain accurate results.

While compensated algorithms are often quite effective, they are not suitable for all
situations, and so the use of high-precision software such as the QD library [61] is some-
times required.

3.4 Computing the “skeleton” of periodic orbits

In words of H. Poincaré, periodic orbits form the “skeleton” of a dynamical system and
provide much useful information. Therefore, the search for periodic orbits is a quite
old problem and numerous numerical and analytical methods have been designed for
them. Here we mention just two methods that have been used with high-precision in the
literature: the Lindstedt-Poincaré technique [79] and one of the most simple and powerful
method to find periodic orbits, namely the systematic search method [21], where one takes
advantage of symmetries of the system to find symmetric periodic orbits [67].

Theorem 3 Let o(x) be an orbit of a flow of an autonomous vector field dx/dt = f(x)
with a reversal symmetry S (thus dS(x)/dt = −f(S(x))). Then, an orbit o(x) intersects
Fix(S) := {x |S(x) = x } in precisely two points if and only if the orbit is periodic (and
not a fixed point) and symmetric with respect to S.

The above results were already known by Birkhoff, DeVogelaere and Strömgren (among
others) and were used to find symmetric periodic orbits.

16

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

limit
m=1
m=2
m=3
m=4

B

A

Figure 7: Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the
most chaotic zone of the 7 + 2 Ring problem using double (A) and quadruple (B) precision.
(Reproduced with permission from [21]).

The usage of high-precision numerical integrators in the determination of periodic
orbits is required in the search of highly unstable periodic orbits. For instance, in Figure
7 we show the computed symmetric periodic orbit for the 7+2 Ring problem using double
and quadruple precision [23]. The (n + 2)-body Ring problem [23] describes the motion
of an infinitesimal particle attracted by the gravitational field of n + 1 primary bodies,
n in the vertices of a regular polygon that is rotating on its own plane about the center
with a constant angular velocity. Each point on the figures corresponds to the initial
conditions of one symmetric periodic orbit, and the grey area corresponds to regions of
forbidden motion (delimited by the limit curve). Note that in order to avoid “false”
initial conditions it is useful to check if the initial conditions generate a periodic orbit
up to a given tolerance level. But in the case of highly unstable periodic orbits we may

17

lose several digits in each period, so that double precision is not enough in many unstable
cases, resulting in gaps in the figure.

Figure 8: Fractal property of the Lorenz attractor. On the first plot, the intersection of
an arbitrary trajectory on the Lorenz attractor with the section z = 27. The plot shows
a rectangle in the x − y plane. All later plots zoom in on a tiny region (too small to be
seen by the unaided eye) at the center of the red rectangle of the preceding plot to show
that what appears to be a line is in fact not a line. (Reproduced with permission from
[81]).

The Lindstedt-Poincaré method [79] for computing periodic orbits is based on the
Lindstedt-Poincaré technique of perturbation theory, Newton’s method for solving non-
linear systems and Fourier interpolation. D. Viswanath [80] uses this algorithm in com-
bination with high-precision libraries to obtain periodic orbits for the Lorenz model at
the classical Saltzman’s parameter values. This procedure permits one to compute, to
high accuracy (more than 100 digits of precision), highly unstable periodic orbits (for
instance the orbit with symbolic dynamics LRL2R2 · · ·L15R15 has a leading characteristic
multiplier 3.06 · 1059, which means that we can expect that at each period we lose around
59 digits of precision). For these reasons, high-precision arithmetic plays a fundamental
role in the study of the fractal properties of the Lorenz attractor (see Fig. 8) and in
a consistent formal development of complex singularities of the Lorenz system using psi
series [80, 81].

18

3.5 Divergent asymptotic series and homoclinic phenomena

One interesting phenomena in dynamical systems is the study of the splitting of separa-
trices of area preserving maps. Numerical difficulties arise because this phenomena can
exhibit exponentially small splitting [51, 56].

1 2 3 4 5 6

1

2

3

0
0

α
standard map

(ε=1)

0

3
pendulum

quadratic map

asymmetric cubic map

(ε=1)

x

y

y

Figure 9: Left: Phase-space for the pendulum equations with the separatrix in red and the
discrete version (standard map) for ε = 1 with the stable and the unstable separatrices.
Right: stable and the unstable separatrices for the quadratic map and the asymmetric
cubic map. (Partially reproduced with permission from [51])

For instance, the most common paradigmatic example is the standard map defined by
(x, y) 7→ (x̂, ŷ) where

ŷ = y + ε sinx, x̂ = x+ ŷ

and ε is a small positive constant. This map can be obtained, for example, by a simple
time discretization (a symplectic Euler of discretization step

√
ε) of the pendulum equation

ẋ = y, ẏ = sinx [56]. The phase space structure of both systems, the continuous case and
the map, are very different (except for small values of ε). In fact, the pendulum problem
is an integrable system and its phase space is very regular (see Fig. 9). There is a unique
separatrix that connect the hyperbolic fixed point at 0 and at 2π, that is, the unstable
manifold at 0 coincide with the unstable manifold at 2π. When we see the map, the two
manifolds do not coincide and so the separatrix splits (splitting of separatrices). Now
we have transverse intersection points that gives homoclinic points and that imply the

19

existence of complex dynamics or chaotic motion. Therefore the study of this phenomena
of splitting of separatrices gives a deep information about the system, and so related with
this, it is important to study the angle between the stable and the unstable separatrices at
the intersection points. If the angle does not vanish we may affirm that this phenomena
occurs. In Fig. 9 we illustrate also the phenomena with two other maps (the quadratic
map and the asymmetric cubic map [51]).

An asymptotic formula for the angle between the stable and the unstable separatrices
for the standard map at the primary homoclinic point was given by Lazutkin [68]:

α =
π

ε
e
− π

2
√
ε
(
1118.8277059409 . . .+O(

√
ε)
)
.

As a result, the separatrices are transversal, but the angle between them is exponentially
small compared to ε. This leads to severe problems in numerical simulations. Gelfreich
and Simó [51] use a homoclinic invariant ω that gives the area of a parallelogram defined
by two vectors tangent to the stable and the unstable manifolds at the homoclinic point.
While ω in the standard map can be represented by an asymptotic series, one question
is what happens when we use several generalizations of the standard map. In [51], the
authors employed high-precision computation of the homoclinic invariant and consecu-
tive extraction of coefficients of an asymptotic expansion, in order to obtain a numerical
evidence that various different types of asymptotic expansions arise in this class of prob-
lems. These results are unachievable using standard double precision; in some numerical
simulations 1000-digit precision was required. In the literature there are other numerous
examples of high-precision computation of this phenomena of exponentially small splitting
of separatrices.

3.6 Detecting Strange Nonchaotic Attractors

In the study of dynamics of dissipative systems the detection of the attractors is quite
important, because they are the visible invariant sets of the dynamics of the problem. An
attractor is defined as strange if it is not a piecewise smooth manifold and chaotic if any
orbit on it exhibits sensitive dependence on initial conditions. All the first examples of
strange attractors in the literature where strange chaotic attractors, but soon some strange
nonchaotic attractors (SNAs) were identified [54]. Several authors suggested that in the
transition to chaos in quasiperiodically forced dissipative systems, in particular in the so
called fractalization route in which a smooth torus seems to fractalize, strange nonchaotic
attractors appear. In [57], Haro and Simó showed that in truth some of these attractors
are nonstrange. These authors found that multiprecision arithmetic with more than 30
digits was needed to reliably study this behavior at very small scales. For example, in

20

Fig. 10 we shaw the attractor of the RH map given by

xn+1 = 1 + yn − ax2
n + ε cos(2πθn),

yn+1 = bxn,
θn+1 = θn + ω (mod 1).

This model is expected to be the scenario of the creation of SNAs through the fractaliza-
tion route in which a smooth torus seems to fractalize, but although for low to double-
precision simulations the attractor seems to be strange (see first, zoom-1 and zoom-2
pictures of Fig. 10), when one go to a scale 10−26 we may appreciate that the attractor do
not seems to be strange (see zoom-3 picture of Fig. 10). Therefore, in this case (and in
many cases) the SNAs is not produced via the fractalization route, but what is evident is
that this phenomena requires a very high-precision numerical simulation to give a correct
information of what really happens on the systems.

0 0.2 0.4 0.6 0.8 1 θ
-2

-1

0

1

2

x

R H map: a= 0.7, b= 0.1, ε= 0.7

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-10θ0= 0.8754571539

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-20θ0= 0.87545715390369882716

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-26θ0= 0.87545715390369882716305289

zoom 1

zoom 2

zoom 3

Figure 10: The attractor of the RH map with a = 0.7, b = 0.1, ω = (
√

5 − 1)/2 and
ε = 0.7, and several zooms. (Reproduced with permission from [57]).

In some systems the Lyapunov sum can display arbitrarily large oscillations around
the average line [37]. This means that, if the oscillations are wide enough, roundoff errors

21

are locally amplified by a large factor. This may give us a numerically observed behavior
which is completely wrong. An interesting example is the Logistic family driven by a rigid
rotation [37] given by

xn+1 = 1− (a+ ε sin(2πθn))x2
n,

θn+1 = θn + α (mod 1).

In this case we may observe how a numerically computed orbit can depend strongly on the
precision used in its computation. Note that in this system the Lyapunov sum decreases
during the first 600 iterates to the minimum value of −665, later increases in the next 800
iterates till −460 and decreases again, and so on (with an average line that decreases).
This means that the local errors increase by about exp(−460+665) ≈ 1089 in 1400 iterates.
And as result we can imagine that using a precision lower than 10−89 will lead to erroneous
results. In Fig. 11 we may observe the consequences, double precision and 60 digits lead
to what it seems to be a SNAs. But if we repeat the calculus with 150 digits we observe
that this was just an spurious result of insufficient accuracy on the simulations.

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

DP

x

θ

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

digits = 60

x

θ

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

x

θ

digits = 150

Figure 11: Attractors of the Logistic family driven by a rigid rotation with standard
double precision (DP), 60 and 150 decimal digits, for (a, ε, α) = (1.30, 0.30, γ/1000),
where γ denotes the Golden Mean. (Reproduced with permission from [37]).

3.7 A discrete dynamical system: Discovery and partial proof

Let RA(x) := 2PA(x) − x,RB(x) := 2PB(x) − x, where PA, PB denote the Euclidean
metric projections, or nearest point maps, on closed sets A and B. In our setting, the
Lions-Mercier (LM) iteration (which can be given many other names [26] such as Douglas-
Rachford or Feinup’s algorithm) is the procedure: reflect, reflect and average:

x 7→ T (x) :=
x+RA (RB(x))

2
. (10)

Note that a fixed point z of T produces precisely a point w such that w := PB(z) =
PA (RB(z)) is an element of A∩B. Moreover, if one shows that ‖T (zn)−zn‖ → 0 (known

22

as asymptotic regularity of zn+1 := T (zn)) then every cluster point of the corresponding
orbit produces a fixed point z.

The consequent theory of this and related iterations is well understood in the convex
case [25, 26, 27]. In the non-convex case the iteration, also called “divide-and-concur” [53],
has been very successful in a variety of reconstruction problems (such as protein folding,
3SAT, spin glasses, giant Sudoku puzzles, etc.). As discovered very recently, “divide and
concur” works better than theory can explain [47, 53]. Even the most special case is
subtle and illustrative of general phase reconstruction problems and the like.

Let PA(x) and RA(x) := 2PA(x) − x denote respectively the projector and reflector
on a set A as shown in Figure 12 where A is the boundary of the shaded ellipse. Then
“divide and concur” is the natural geometric iteration “reflect-reflect-average”:

xn+1 =→ xn +RA (RB(xn))

2
. (11)

Figure 12: Reflector (interior) and Projector (boundary) of a point external to an ellipse.

Consider the simplest case of a line A of height α (all lines may be assumed horizontal)
and the unit circle B.With zn := (xn, yn) we obtain the explicit iteration

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := arg zn). (12)

For the infeasible case with α > 1 it is easy to see the iterates go to infinity vertically.
For the tangent α = 1 we provably converge to an infeasible point. For 0 < α < 1,
the pictures are lovely but global proofs escape the authors; as discussed below local
convergence is shown in [35]. Spiraling is ubiquitous in this case. Two representative
Maple pictures follow:

For α = 0 we can prove convergence to one of the two points in A ∩ B if and only
if we do not start on the vertical axis, where we provably have chaos. The iteration
is illustrated in Figure 13 starting at (4.2,−0.51) with α = 0.94. Let us sketch how
the interactive geometry Cinderella (available at http://www.cinderella.de) leads one
both to discovery and a proof in this equatorial case. Interactive applets are easily made;
the next two figures are based on material available online at, respectively:

23

Figure 13: The first three iterates of (12) in Cinderella.

A1. http://users.cs.dal.ca/~jborwein/reflection.html

A2. http://users.cs.dal.ca/~jborwein/expansion.html

Figure 15 illustrates the applet A1 at work: by dragging the trajectory (with N = 28)
one quickly discovers that

(i) as long as the iterate is outside the unit circle the next point is always closer to the
origin;

(ii) once inside the circle the iterate never leaves;

(iii) the angle now oscillates to zero and the trajectory hence converges to (1, 0).

All of this is quite easily made algebraic in the language of (12).
Figure 16 illustrates the applet A2, which takes up to 10, 000 starting points in the

rectangle {(x, y) : 0 ≤ x ≤ 1, |y − α‖ ≤ 1} colored by distance from the vertical axis with
red on the axis and violet at x = 1, and produces the first hundred iterations in gestalt.
Thus we see clearly, but cannot yet rigorously prove, that all points not on the y-axis are
swept into the feasible point (

√
1− α2, α).

This graphic, namely Figure 16, demonstrates in clear graphical terms the numerical
difficulty in these examples. Comparing the left-hand side (based solely on computations
done in Cinderella using ordinary 64-bit IEEE arithmetic) with the right-hand side (based
on data computing using Maple, employing higher-precision arithmetic), it is clear that
Cinderella’s double precision (14 digits) is inadequate. Indeed, the limitations of ordinary

24

Figure 14: The behavior of (12) for α = 0.95 (L) and α = 1 (R).

64-bit IEEE arithmetic (approximately 15 digits) loom as a major obstacle in further
explorations of this type – the usage of higher-precision arithmetic will be mandatory.

Long before the advent of the excellent computer-basic graphics tools that we take for
granted today, the British mathematician Littlewood wrote [70, p. 53]:

“A heavy warning used to be given [by lecturers] that pictures are not rigorous;
this has never had its bluff called and has permanently frightened its victims
into playing for safety. Some pictures, of course, are not rigorous, but I should
say most are (and I use them whenever possible myself).”—J. E. Littlewood,
(1885-1977)

In a similar vein, we find it hard to be persuaded that the applet A2 does not constitute
a proof of sorts of what it displays in Figure 17.

We have also considered the analogous differential equation, since asymptotic tech-
niques for such differential equations are better developed. We decided that

x′(t) =
x(t)

r(t)
− x(t), y′(t) = α− y(t)

r(t)
,

where r(t) :=
√
x(t)2 + y(t)2, was a reasonable counterpart to the Cartesian formulation

of (12)—we have replaced the difference xn+1 − xn by x′(t), etc.—as shown in Figure 18.
This led to a proof of local convergence for 0 < α < 1 [35] and of the spiraling as seen in
the pictures. But we have no global result in this case and now we have a whole other
class of discoveries without explanation.

We should add that this is an ideal problem to introduce early undergraduates to
research, since it involves only school geometry notions and has many accessible extensions

25

Figure 15: Discovery of the proof with α = 0.

in two or three dimensions. Much can be discovered, and most of it will be both original
and unproven. Consider, for instance, what happens when B is a line segment or a
finite set rather than a line or when A is a more general conic section. Corresponding
algorithms, like “project-project-average,” are representative of techniques used to correct
the Hubble telescope’s early optical aberration problems.

4 Experimental mathematics

Very high-precision computations (typically 100 to several thousand digits) have proven
to be an essential tool for the emerging discipline of “experimental mathematics” [29, 5].
One of the key techniques used here is the PSLQ integer relation detection algorithm [10],
which, given an n-long vector (xi) of real numbers (presented as a vector of high-precision
values), attempts to recover the integer coefficients (ai), not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0 (13)

(to available precision), or else determines that there are no such integers (ai) of a given
size. The PSLQ algorithm operates by developing, iteration by iteration, an integer-valued
matrix A that successively reduces the maximum absolute value of the entries of the vector
y = Ax (where x is the input vector mentioned above), until one of the entries of y is zero
or within an “epsilon” of zero. With PSLQ or any other integer relation detection scheme,
if the underlying integer relation vector of length n has entries of maximum size d digits,

26

Figure 16: Gestalt of 400 third steps in Cinderella without (L) and with Maple data (R).

then the input data must be specified to at least nd-digit precision (and the algorithm
must be performed using this precision level) or else the true relation will be lost in a sea
of spurious artifacts of numerical round-off error.

Perhaps the best-known application of PSLQ in experimental mathematics is the 1996
computer-based discovery of what is now known as the “BBP” formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (14)

This formula has the remarkable property that it permits one to calculate binary or
hexadecimal digits beginning at the n-th digit, without needing to calculate any of the
first n− 1 digits, using a simple scheme that requires very little memory and no multiple-
precision arithmetic software [4], [29, pp. 135–143]. Recently Tse Wo Zse, a researcher
with Yahoo! Cloud Computing, used a variant of this formula to compute binary digits
of π beginning at the two quadrillionth bit [78]. Since 1996, numerous other formulas of
this type have been found using PSLQ and then subsequently proven [29, pp. 147–149].

In an unexpected turn of events, it has been found that these computer-discovered
formulas have implications for the age-old question of whether (and why) the digits of
certain well-known math constants are statistically random. In particular, one of the

27

Figure 17: Snapshots of 10, 000 points after 0, 2, 7, 13, 16, 21, and 27 steps in Cinderella.

present researchers and Richard Crandall found that the question of whether constants
such as π and log 2 are 2-normal (i.e., every string of m binary digits appears, in the
limit, with frequency 2−m) reduces to a conjecture about the behavior of a certain explicit
pseudorandom number generator that is related to the respective BBP-type formula for
that constant [11], [29, pp. 163–178]. This same line of investigation has led to a formal
proof of normality for an uncountably infinite class of explicit real numbers [12], the
simplest instance of which is

α2,3 =
∞∑
n=1

1

3n23n
,

which is provably 2-normal.

4.1 Nonlinear oscillator theory

One application of experimental mathematical techniques to a mathematical physics prob-
lem was inspired by a recent paper by Quinn, Rand, and Strogatz, who described a

28

Figure 18: ODE solution and vector field for (13) with α = 0.97 in Cinderella.

nonlinear oscillator system by means of the formula

0 =
N∑
i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2 − 1√
1− s2(1− 2(i− 1)/(N − 1))2

)
. (15)

They noted that for large N , s ≈ 1−c/N , where c = 0.6054436... These researchers asked
two of the present authors and Richard Crandall to validate and extend this computation,
and challenged us to identify this limit if it exists. By means of a Richardson extrapolation
scheme, implemented on 64-CPUs of a highly parallel computer system, we computed
(using the QD software)

c = 0.6054436571967327494789228424472074752208996 . . .

This calculation led to a proof that the limit c exists and is the positive root of the Hurwitz
zeta function

ζ (1/2, c/2) = 0,

where ζ(s, a) :=
∑

n≥0 1/(n + a)s. Moreover, we were able to sketch the higher-order
asymptotic behavior [8], something that would have been impossible without discovery of
an analytic formula.

29

Such constants are especially interesting in light of even more recent work by Steve
Strogatz and his collaborators on chimera—coupled systems which can self-organize in
parts of their domain and remain disorganized elsewhere. See Figure 19 taken from [71].

remains constant, except for slight fluctuations due to
finite-size effects. Thus, this chimera is stable and statisti-
cally stationary. However, if we increase � (the coupling
within a population) relative to � (the coupling between
populations), the stationary state can lose stability. Now the
order parameter pulsates, and the chimera starts to breathe
[Fig. 2(b)]. The breathing cycle lengthens as we increase
the disparity A � �� � between the couplings [Fig. 2(c)].
At a critical disparity, the breathing period becomes infi-
nite. Beyond that, the chimera disappears and the synchro-
nized state becomes a global attractor.

To explain these results, we analyze Eq. (1) in the
continuum limit where N� ! 1 for � � 1, 2. Then
Eq. (1) gives rise to the continuity equations

@f�

@t
�

@
@�
�f�v�� � 0; (2)

where f���; t� is the probability density of oscillators in
population �, and v���; t� is their velocity, given by

 v���; t� � !�
X2

�0�1

K��0
Z

sin��0 � �� ��f�
0
��0; t�d�0:

(3)

(Note that we dropped the superscripts on � to ease the
notation. Thus, � means �� and �0 means ��

0
.) If we define

a complex order parameter

 z��t� �
X2

�0�1

K��0
Z
ei�

0
f�

0
��0; t�d�0; (4)

then v���� simplifies to

 v���; t� � !�
1

2i
�z�e

�i�e�i� � z��e
i�ei��; (5)

where the � denotes complex conjugate.
Following Ott and Antonsen [11], we now consider a

special class of density functions f� that have the form of a
Poisson kernel. The remarkable fact that Ott and Antonsen
discovered is that such kernels satisfy the governing equa-
tions exactly, if a certain low-dimensional system of ordi-
nary differential equations is satisfied. In other words, for
this family of densities, the dynamics reduce from infinite
dimensional to finite (and low) dimensional. (Numerical
evidence suggests that all attractors lie in this family, but
proving this remains an open problem.) Specifically, let

 f���; t� �
1

2�

�
1�

�X1
n�1

�a��t�ei��n � c:c:
��
: (6)

What is special here is that we use the same function a��t�
in all the Fourier harmonics, except that a� is raised to the
nth power in the nth harmonic. Inserting this f� into the
governing equations, one finds that this is an exact solution,
as long as

 _a � � i!a� �
1
2�a

2
�z�e�i� � z��ei�� � 0: (7)

Instead of infinitely many amplitude equations, we have
just one. (It is the same equation for all n.)

To close the system, we express the complex order
parameter z� in terms of a�. Inserting the Poisson kernel
(6) into Eq. (4), and performing the integrations, yields

 z��t� �
X2

�0�1

K��0a
�
�0 �t�; (8)

 0

 1

 0

 1

 0

 1

 0 500 1000

t

r

a

b

c

FIG. 2 (color online). Order parameter r versus time. In all
three panels, N1 � N2 � 128 and � � 0:1. (a) A � 0:2: stable
chimera; (b) A � 0:28: breathing chimera; (c) A � 0:35: long-
period breather. Numerical integration began from an initial
condition close to the chimera state, and plots shown begin after
allowing a transient time of 2000 units.

−π

π

θj

oscillator index j f (θ)

a b c

FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.

PRL 101, 084103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

084103-2

Figure 19: Simulated chimera. (Left) Snapshot of a chimera state, obtained by numerical
integration. (a) Synchronized population. (b) Desynchronized population. (c) Predicted
density of desynchronized phases (smooth curve) agrees with observed histogram. (Right)
Order parameter r versus time. (a) stable chimera; (b) breathing chimera; (c) long-period
breather. Numerical integration began from an initial condition close to the chimera
state, and plots shown begin after allowing a transient time of 2000 units. (Figures and
parameters from [71])

4.2 Ising integrals

Very high-precision computations, combined with the PSLQ algorithm, have been re-
markably effective in recognizing (in terms of analytic formulas) certain classes of definite
integrals that arise in mathematical physics settings. Such results are highly prized by
mathematical physicists, because they can be used in asymptotic expansions or other
useful analytic expressions. Results of this sort remain hidden if one merely computes
standard-precision numerical values.

These studies most often have employed either Gaussian quadrature (in cases where
the function is well behaved in a closed interval) or the “tanh-sinh” quadrature scheme due
to Takahasi and Mori [77] (in cases where the function has an infinite derivative or blow-
up singularity at one or both endpoints). For many integrand functions, these schemes
exhibit “quadratic” or “exponential” convergence—dividing the integration interval in
half (or, equivalently, doubling the number of evaluation points) approximately doubles
the number of correct digits in the result [14].

30

In one study, the tanh-sinh quadrature scheme, implemented using the ARPREC soft-
ware, was employed to study the following classes of integrals [7]. Here, the Dn integrals
arise in the Ising theory of mathematical physics, and the Cn have tight connections to
quantum field theory:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

En = 2

∫ 1

0

· · ·
∫ 1

0

(∏
1≤j<k≤n

uk − uj
uk + uj

)2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k

i=1 ti.
Needless to say, evaluating these n-dimensional integrals to high precision presents a

daunting computational challenge. Fortunately, in the first case, we were able to show
that the Cn integrals can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function [2]. After computing Cn to 1000-digit accuracy
for various n, we were able to identify the first few instances of Cn in terms of well-known
constants, e.g.,

C3 = L−3(2) =
∑
n≥0

(
1

(3n+ 1)2
− 1

(3n+ 2)2

)
C4 =

7

12
ζ(3),

where ζ denotes the Riemann zeta function. When we computed Cn for fairly large n, for
instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new edition of
the Inverse Symbolic Calculator, available at http://carma-lx1.newcastle.edu.au:8087,
this numerical value can be identified as

lim
n→∞

Cn = 2e−2γ,

31

where γ is Euler’s constant. We later were able to prove this fact—this is merely the first
term of an asymptotic expansion—and thus showed that the Cn integrals are fundamental
in this context [7].

The integrals Dn and En are much more difficult to evaluate, since they are not re-
ducible to one-dimensional integrals (as far as we can tell), but with certain symmetry
transformations and symbolic integration we were able to reduce the dimension in each
case by one or two. In the case ofD5 and E5, the resulting 3-D integrals are extremely com-
plicated, but we were nonetheless able to numerically evaluate these to at least 240-digit
precision using highly parallel computer systems at Virginia Tech and at the Lawrence
Berkeley National Lab. In this way, we produced the following evaluations, all of which
except the last we subsequently were able to prove:

D2 = 1/3

D3 = 8 + 4π2/3− 27 L−3(2)

D4 = 4π2/9− 1/6− 7ζ(3)/2

E2 = 6− 8 log 2

E3 = 10− 2π2 − 8 log 2 + 32 log2 2

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2− 22π2/3

E5
?
= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2

−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2− 40 log 2,

where Li denotes the polylogarithm function. In the case of D2, D3 and D4, these are
confirmations of known results. We tried but failed to recognize D5 in terms of similar
constants (the 500-digit numerical value is available if anyone wishes to try). The conjec-
tured identity shown here for E5 was confirmed to 240-digit accuracy, which is 180 digits
beyond the level that could reasonably be ascribed to numerical round-off error; thus we
are quite confident in this result even though we do not have a formal proof [7]. In a
follow-on study [9], we examined the following generalization of the Cn integrals:

Cn,k =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)k+1

du1

u1

· · · dun
un

.

Here we made the initially surprising discovery—now proven in [34]—that there are linear
relations in each of the rows of this array, considered as a doubly-infinite rectangular

32

matrix, for example:

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8.

In yet a more recent study, co-authored with physicists David Broadhurst and Larry
Glasser [6], we were able to analytically recognize many of these Cn,k integrals—because,
remarkably, these same integrals appear naturally in quantum field theory (for odd k).
We also discovered, and then proved with considerable effort, that with cn,k normalized
by Cn,k = 2n cn,k/(n! k!), we have

c3,0 =
3Γ6(1/3)

32π22/3
=

√
3π3

8
3F2

(
1/2, 1/2, 1/2

1, 1

∣∣∣∣∣14
)

c3,2 =

√
3π3

288
3F2

(
1/2, 1/2, 1/2

2, 2

∣∣∣∣∣14
)

c4,0 =
π4

4

∞∑
n=0

(
2n
n

)4
44n

=
π4

4
4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

c4,2 =
π4

64

[
4 4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

−3 4F3

(
1/2, 1/2, 1/2, 1/2

2, 1, 1

∣∣∣∣∣1
)]
− 3π2

16
,

where pFq denotes the generalized hypergeometric function [2]. The corresponding odd
values are c3,1 = 3L−3(2)/4, c3,3 = L−3(2)−2/3, c4,1 = 7ζ(3)/8 and c4,3 = 7ζ(3)/32−3/16.

Integrals in the Bessel moment study were quite challenging to evaluate numerically.
As one example, we sought to numerically verify the following identity that we had derived
analytically:

c5,0 =
π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ) K(sinφ)√
cos2 θ cos2 φ+ 4 sin2(θ + φ)

dθ dφ ,

where K denotes the elliptic integral of the first kind [2]. Note that this function has blow-
up singularities on all four sides of the region of integration, with particularly troublesome
singularities at (π/2,−π/2) and (−π/2, π/2) (see Figure 1). Nonetheless, after making

33

Figure 20: Plot of c5,0 integrand function.

some minor substitutions, we were able to evaluate (and confirm) this integral to 120-digit
accuracy (using 240-digit working precision) in a run of 43 minutes on 1024 cores of the
“Franklin” system at LBNL.

5 Other examples

We briefly summarize here a number of other applications of high-precision arithmetic
that have been reported to us. For additional details, please see the listed references.

5.1 Supernova simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package to solve
for the non-local thermodynamic equilibrium populations of iron and other atoms in the
atmospheres of supernovae and other astrophysical objects [15, 58]. Iron, for example,
may exist as Fe II in the outer parts of the atmosphere, but in the inner parts Fe IV
or Fe V could be dominant. Introducing artificial cutoffs leads to numerical glitches,
so it is necessary to solve for all of these populations simultaneously. Since the relative
population of any state from the dominant stage is proportional to the exponential of
the ionization energy, the dynamic range of these numerical values can be large. Among
various potential solutions, these authors found that using double-double (or, in some
cases, quad-double) arithmetic to be the most straightforward and effective.

34

5.2 Climate modeling

It is well-known that climate simulations are fundamentally chaotic—if microscopic changes
are made to the present state, within a certain period of simulated time the future state
is completely different. Indeed, ensembles of these calculations are required to obtain sta-
tistical confidence in global climate trends produced from such calculations. As a result,
climate modeling codes quickly diverge from any “baseline” calculation, even if only the
number of processors used to run the code is changed. For this reason, it is often difficult
for researchers to compare results, or even to determine whether they have correctly de-
ployed their code on a given system. Recently Helen He and Chris Ding found that almost
all of the numerical variation in an atmospheric code occurred in a long inner product
loop in the data assimilation step and in a similar operation in a large conjugate gradi-
ent calculation. He and Ding found that employing double-double arithmetic for these
loops dramatically reduced the numerical variability of the entire application, permitting
computer runs to be compared for much longer run times than before [60].

5.3 Coulomb n-body atomic system simulations

Numerous computations have been performed using high-precision arithmetic to study
atomic-level Coulomb systems. For example, Alexei Frolov of Queen’s University in On-
tario, Canada has used high-precision software to solve the generalized eigenvalue problem
(Ĥ−EŜ)C = 0, where the matrices Ĥ and Ŝ are large (typically 5, 000×5, 000 in size) and
very nearly degenerate. Until recently, progress in this arena was severely hampered by
the numerical difficulties induced by these nearly degenerate matrices. Frolov found that
by employing 120-digit arithmetic, “we can consider and solve the bound state few-body
problems which have been beyond our imagination even four years ago” [13, 49].

5.4 Studies of the fine structure constant of physics

In the past few years, significant progress has been achieved in using high-precision arith-
metic to obtain highly accurate solutions to the Schrodinger equation for the lithium
atom. In particular, the nonrelativistic ground state energy has been calculated to an
accuracy of a few parts in a trillion, a factor of 1500 improvement over the best previous
results. With these highly accurate wavefunctions, researcjers have been able to test the
relativistic and QED effects at the 50 parts per million (ppm) level and also at the one
ppm level [82]. Along this line, a number of properties of lithium and lithium-like ions
have also been calculated, including the oscillator strengths for certain resonant tran-
sitions, isotope shifts in some states, dispersion coefficients and Casimir-Polder effects
between two lithium atoms. When some additional computations are completed, the fine
structure constant may be obtained to an accuracy of 16 parts per billion [83].

35

5.5 Scattering amplitudes of quarks, gluons and bosons

An international team of physicists working on the Large Hadron Collider (LHC) is com-
puting scattering amplitudes involving quarks, gluons and gauge vector bosons, in order
to predict what results could be expected on the LHC. By default, these computations
are performed using conventional double precision (64-bit IEEE) arithmetic. Then if a
particular phase space point is deemed numerically unstable, it is recomputed with double-
double precision. These researchers expect that further optimization of the procedure for
identifying unstable points may be required to arrive at an optimal compromise between
numerical accuracy and performance. Their objective is to design a procedure where the
number of digits in the higher precision calculation is dynamically set according to the
instability of the point [46]. Three related applications of high-precision arithmetic are
given in [28, 73, 40].

6 Conclusion

We have presented here a brief survey of the rapidly expanding applications of high-
precision arithmetic in modern scientific computing. It is worth noting that all of these
examples have arisen in the past ten years. Thus we may be witnessing the birth of a new
era of scientific computing, in which the numerical precision required for a computation is
as important to the program design as are the algorithms and data structures. We hope
that our survey and analysis of these computations will be useful in this process.

References

[1] A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator
for Differential EquationS,” 2009, http:gme.unizar.es/software/tides.

[2] M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions, Dover,
New York, 1972.

[3] J. Applegate, M. Douglas, Y. Gursel, G. J. Sussman and J. Wisdom, “The Outer
Solar System for 200 Million Years,” Astronomical Journal, vol. 92 (1986), 176–194.

[4] D. H. Bailey, P. B. Borwein, and S. Plouffe, “On the rapid computation of various
polylogarithmic constants,” Math. of Computation, vol. 66 (Apr 1997), 903–913.

[5] D. H. Bailey and J. M. Borwein, “Experimental mathematics: Examples, methods
and implications,” Notices of the AMS, vol. 52 (May 2005), 502-514.

36

[6] D. H. Bailey, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic integral
evaluations of Bessel moments,” J. Physics A: Math. and Gen., vol. 41 (2008),
205203.

[7] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” J.
Physics A: Math. and Gen., vol. 39 (2006), 12271–12302.

[8] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Resolution of the
Quinn-Rand-Strogatz constant of nonlinear physics,” Exp. Mathematics, vol. 18
(2009), 107–116.

[9] David H. Bailey, David Borwein, Jonathan M. Borwein and Richard Crandall,
“Hypergeometric forms for Ising-class integrals,” Exp. Mathematics, vol. 16 (2007),
257–276.

[10] D. H. Bailey and D. Broadhurst, “Parallel integer relation detection: Techniques
and applications,” Math. of Computation, vol. 70 (2000), 1719–1736.

[11] D. H. Bailey and R. E. Crandall, “On the random character of fundamental
constant expansions,” Exp. Mathematics, vol. 10 (2001), 175–190.

[12] D. H. Bailey and R. E. Crandall, “Random generators and normal numbers,” Exp.
Mathematics, vol. 11 (2004), 527–546.

[13] D. H. Bailey and A. M. Frolov, “Universal variational expansion for high-precision
bound-state calculations in three-body systems. Applications to weakly-bound,
adiabatic and two-shell cluster systems,” J. Physics B, vol. 35 (2002), 42870–4298.

[14] D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision
quadrature schemes,” Exp. Mathematics, vol. 14 (2005), 317–329.

[15] E. Baron and P. Nugent, personal communication, Nov. 2004.

[16] R. Barrio, “Rounding error bounds for the Clenshaw and Forsythe algorithms for
the evaluation of orthogonal polynomial series,” J. Comput. Appl. Math. 138 (2002)
1985–204.

[17] R. Barrio, “Performance of the Taylor series method for ODEs/DAEs,” Appl.
Math. Comput., vol. 163 (2005), 525–545.

[18] R. Barrio, “Sensitivity analysis of ODEs/DAEs using the Taylor series method,”
SIAM Journal on Scientific Computing, vol. 27 (2006), 1929–1947.

37

[19] R. Barrio, B. Melendo and S. Serrano, “Generation and evaluation of orthogonal
polynomials in discrete Sobolev spaces I. Algorithms,” J. Comput. Appl. Math., vol.
181 (2005), 280–298.

[20] R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in
discrete Sobolev spaces II. Numerical stability,” J. Comput. Appl. Math., vol. 181
(2005), 299–320.

[21] R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF
Hamiltonian systems,” Chaos, Solitons and Fractals, vol. 41 (2009), 560–582.

[22] R. Barrio, F. Blesa, M. Lara, “VSVO formulation of the Taylor method for the
numerical solution of ODEs,” Comput. Math. Appl., vol. 50 (2005), 93–111.

[23] R. Barrio, F. Blesa and S. Serrano, “Qualitative analysis of the (n+ 1)-body ring
problem,” Chaos Solitons Fractals, vol. 36 (2008), 1067–1088.

[24] R. Barrio, B. Melendo y S. Serrano, “On the numerical evaluation of linear
recurrences,” Journal of Computational and Applied Mathematics, vol. 150 (2003),
71–86.

[25] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Finding best approximation
pairs relative to two closed convex sets in Hilbert spaces,” J. Approx. Theory, vol.
127 (2004), 178–192.

[26] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction
algorithm, and Fienup variants: A view from convex optimization,” J. Opt. Soc.
Amer. A, vol. 19 (2002), 1334–1345.

[27] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent
reflection method for finding the projection onto the intersection of two closed
convex sets in a Hilbert space,” J. Approx. Theory, vol. 141 (2006), 63–69.

[28] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. A.
Kosower and D. Maitre, “An automated implementation of on-shell methods for
one-loop amplitudes,” Phys. Rev. D, vol. 78 (2008), 036003,
http://arxiv.org/abs/0803.4180.

[29] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning
in the 21st Century, A.K. Peters, Natick, MA, second edition, 2008.

[30] J. M. Borwein and D. H. Bailey, Experimentation in Mathematics: Computational
Paths to Discovery, A.K. Peters, Natick, MA, 2004.

38

[31] J. M. Borwein and P. B. Borwein, “The arithmetic-geometric mean and the fast
computation of elementary functions,” SIAM Review, vol. 26 (1984), 351–366.

[32] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number
Theory and Computational Complexity, Canadian Mathematical Society
Monographs, Wiley-Interscience, New York, 1987, reprinted 1998.

[33] J. M. Borwein, P. B. Borwein, and D. H. Bailey, “Ramanujan, modular equations
and pi or how to compute a billion digits of pi,” American Mathematical Monthly,
vol. 96 (1989), 201–219; reprinted in Organic Mathematics Proceedings,
http://www.cecm.sfu.ca/organics, April 12, 1996, with print version:
CMS/AMS Conference Proceedings, vol. 20 (1997), ISSN: 0731–1036.

[34] J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Exp.
Mathematics, vol. 17 (2008), 223–230.

[35] J. M. Borwein and B. Sims, “The Douglas-Rachford algorithm in the absence of
convexity,” Chapter 6, pp. 93–109 in Fixed-Point Algorithms for Inverse Problems
in Science and Engineering in Springer Optimization and Its Applications, in press,
2010.

[36] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge Univ.
Press, 2010.

[37] H. W. Broer, C. Simó and R. Vitolo, “Chaos and quasi-periodicity in
diffeomorphisms of the solid torus,” Discrete Contin. Dyn. Syst. Ser. B, vol. 14
(2005), 871–905.

[38] C.W. Clenshaw, “A note on the summation of Chebyshey series,” Math. Tab.
Wash., vol. 9 (1955) 118–120.

[39] G. Corliss and Y. F. Chang, “Solving ordinary differential equations using Taylor
series,” ACM Trans. Math. Software, vol. 8 (1982), 114–144.

[40] M. Czakon, “Tops from light quarks: Full mass dependence at two-Loops in QCD,”
Phys. Lett. B, vol. 664 (2008), 307, http://arxiv.org/abs/0803.1400.

[41] T.J. Dekker, “A floating-point technique for extending the available precision,”
Numer. Math., vol. 18 (1971), 224–242.

[42] J. Demmel and P. Koev, “The accurate and efficient solution of a totally positive
generalized Vandermonde linear system,” SIAM J. of Matrix Analysis Applications,
vol. 27 (2005), 145–152.

39

[43] W. D. Evans, L.L. Littlejohn, F. Marcellán, C. Markett and A. Ronveaux, “On
recurrence relations for Sobolev orthogonal polynomials,” SIAM J. Math. Anal.,
vol. 26 (1995), 446–467.

[44] J. Dongarra, “LAPACK,” http://www.netlib.org/lapack.

[45] J. Dongarra, “LINPACK,” http://www.netlib.org/linpack.

[46] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, “One-loop
amplitudes for W+3 jet production in hadron collisions,” manuscript, 15 Oct 2008,
http://arXiv.org/abs/0810.2762.

[47] V. Elser, I. Rankenburg, and P. Thibault, “Searching with iterated maps”,
Proceedings of the National Academy of Sciences, vol. 104 (2007), 418–423.

[48] T. Ferris, Coming of Age in the Milky Way, HarperCollins, New York, 2003.

[49] A. M. Frolov and D. H. Bailey, “Highly accurate evaluation of the few-body
auxiliary functions and four-body integrals,” J. Physics B, vol. 36 (2003),
1857–1867.

[50] W. Gautschi, “Computational aspects of three-term recurrence relations. ,” SIAM
Rev., vol. 9 (1967), 24–82.

[51] V. Gelfreich and C. Simó, “High-precision computations of divergent asymptotic
series and homoclinic phenomena,” Discrete Contin. Dyn. Syst. Ser. B, vol. 10
(2008), 511–536.

[52] S. Graillat, P. Langlois and N. Louvet, “Algorithms for accurate, validated and fast
polynomial evaluation,” Japan J. Indust. Appl. Math., vol. 26 (2009), 191–214.

[53] S. Gravel, and V. Elser, “Divide and concur: A general approach to constraint
satisfaction,” preprint, 2008, http://arxiv.org/abs/0801.0222v1.

[54] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, “Strange attractors that are not
chaotic,” Phys. D, vol. 13 (1984), 261–268.

[55] E. Hairer, S. Nørsett and G. Wanner, Solving ordinary differential equations. I.
Nonstiff problems, second edition, Springer Series in Computational Mathematics,
vol. 8, Springer-Verlag, Berlin, 1993.

[56] Vincent Hakim and Kirone Mallick, “Exponentially small splitting of separatrices,
matching in the complex plane and Borel summation,” Nonlinearity, vol. 6 (1993),
57–70.

40

[57] A. Haro and C. Simó, “To be or not to be a SNA: That is the question,” Preprint
2005-17 of the Barcelona UB-UPC Dynamical Systems Group (2005).

[58] P. H. Hauschildt and E. Baron, “The numerical solution of the expanding Stellar
atmosphere problem,” J. Comp. and Applied Math., vol. 109 (1999), 41–63.

[59] W. Hayes, “Is the outer Solar System Chaotic?,” Nature Physics, vol. 3 (2007),
689–691.

[60] Y. He and C. Ding, “Using accurate arithmetics to improve numerical
reproducibility and stability in parallel applications,” J. Supercomputing, vol. 18
(Mar 2001), 259–277.

[61] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for Quad-Double
Precision Floating Point Arithmetic,” 15th IEEE Symposium on Computer
Arithmetic (ARITH-15), 2001.

[62] B. Kehlet and A. Logg, “Long-time computability of the Lorenz system,” preprint
(2010).

[63] Hao Jiang, Roberto Barrio, Xiangke Liao, Lizhi Cheng and Fang Su, “Accurate
evaluation of a polynomial in Chebyshev form,” preprint (2010).

[64] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, third edition, 1998.

[65] P. Koev, “Software,” 2010, available at http://math.mit.edu/~plamen/software.

[66] G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey:
Calculating the structure and chaos due to gravity in the universe,” Proc. of the 8th
ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1997, 1–10.

[67] J. S. W. Lamb, “Reversing symmetries in dynamical systems,” J. Phys. A: Math.
Gen., vol. 25 (1992), 925–937.

[68] V. F. Lazutkin, “Splitting of separatrices for the Chirikov standard map,” J. Math.
Sci., vol. 128 (2005), 2687–2705.

[69] E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., vol. 20 (1963),
130–141.

[70] J. E. Littlewood, A Mathematician’s Miscellany, Methuen and Co., London, 1953,
reprinted by Cambridge University Press, 1997.

41

[71] E. A. Martens, C. R. Laing and S. H. Strogatz, “Solvable model of spiral wave
chimeras,” Physical Review Letters, vol. 104 (2010), 044101.

[72] T. Ogita, S.M. Rump, and S. Oishi, “Accurate sum and dot product,” SIAM J. Sci.
Comput., vol. 26 (2005), 1955–1988.

[73] G. Ossola, C. G. Papadopoulos and R. Pittau, “CutTools: A program
implementing the OPP reduction method to compute one-loop amplitudes,” J.
High-Energy Phys., vol. 0803 (2008), 042, http://arxiv.org/abs/0711.3596.

[74] W. H. Press, S. A. Eukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes: The Art of Scientific Computing, 3rd edition, Cambridge University Press,
2007.

[75] S.M. Rump, “Verification methods: rigorous results using floating-point
arithmetic,” Acta Numer., vol. 19 (2010), 287–449.

[76] C. Simó, “Global dynamics and fast indicators,” in Global Analysis of Dynamical
Systems, 373–389, Inst. Phys., Bristol, 2001.

[77] H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,”
Pub. RIMS, Kyoto University, vol. 9 (1974), 721–741.

[78] Tse-Wo Zse, personal communication to the authors, July 2010.

[79] D. Viswanath, “The Lindstedt-Poincaré technique as an algorithm for computing
periodic orbits,” SIAM Review, vol. 43 (2001), 478–495.

[80] D. Viswanath, “The fractal property of the Lorenz attractor,” Phys. D, vol. 190
(2004), 115–128.

[81] D. Viswanath and Sönmez Şahutǒglu, “Complex singularities and the Lorenz
attractor,” SIAM Rev., in press.

[82] Z.-C. Yan and G. W. F. Drake, “Bethe logarithm and QED shift for Lithium,”
Phys. Rev. Letters, vol. 81 (2003), 774–777.

[83] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED corrections of O(mc2α7 lnα) to
the fine structure splittings of Helium and He-Like ions,” Phys. Rev. Letters, vol. 77
(1994), 1715–1718.

42

